# Syntheses based on Cyclohexadienes. Part 2.1 Convenient Synthesis of 6-AlkyIsalicylates, 6-Alkyl-2,4-dihydroxybenzoate, and 2,5-Dialkylresorcinols 

Charles C. Kanakam, Neelakandha S. Mani, † Halasya Ramanathan, and G. S. R. Subba Rao *<br>Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India


#### Abstract

A one pot synthesis of 6 -alkylsalicylates and 6 -alkyl-2,4-dihydroxybenzoates is described. Cycloaddition of 1 -methoxycyclohexa-1,4- or 1,3-dienes with alkylpropiolic esters results in the regiospecific formation of 2-alkyl-6-methoxybenzoates. Thus, methyl 2-methoxy-6-methyl benzoate, methyl 2,4-dimethoxy-6-methylbenzoate, methyl 2,5-dimethoxy-6-methylbenzoate, methyl 2 -methoxy-4,6dimethylbenzoate, and ethyl 2-butyl-4,6-dimethoxybenzoate, have been prepared. By making use of this method, the synthesis of two dihydroisocoumarins namely ( $\pm$ )-mellein (12) and ( $\pm$ )-6-methoxymellein (14) is described, Employing a similar strategy, a novel route to 2,5 -dialkylresorcinols has been developed. Stemphol (24b) and the antibiotic DB2073 (24d) have been synthesized.


A large number of compounds containing a 6 -alkylsalicylate or 2,4-dihydroxybenzoate skeleton are common in a number of aromatic polyketides of fungal and plant origin. ${ }^{2,3}$ The synthesis of such compounds is difficult because of their unique substitution pattern. Existing methods for the synthesis of methyl orsellinate and other related compounds are: (a) condensation of methyl acetoacetate with methyl crotonate to yield ${ }^{4,5} 6$-methyl-2,4-dioxocyclohexanecarboxylate and subsequent oxidation; (b) biomimetic transformation ${ }^{6}$ of methyl 3,5,7-trioxo-octanoate; and (c) Barton's reaction of the dianion derived from pentane-2,4-dione with sodiomalonate. ${ }^{7}$ These methods are only suitable over a limited range of systems and are often restricted to typical experimental procedures.

As an alternative, we considered the possibility of the cycloaddition of 1 -methoxycyclohexa-1,3- and -1,4-dienes with suitable acetylenic dienophiles for constructing 6 -alkylsalicylates and 2,4-dihydroxybenzoates by making use of the AlderRickert reaction as depicted in the Scheme.


[^0] 695019, India.

Birch and Hextal ${ }^{8}$ reported the first facile addition of dimethyl acetylenedicarboxylate to 1-methoxycyclohexa-1,3dienes and subsequent conversion of the products into methoxyphthalic acids. Reactions of dienes ${ }^{9}$ and cyclohexadienes ${ }^{10,11}$ with suitable dienophiles leading to polyketides has been reported. We report herein an efficient method for the construction of 6-alkylsalicylates and 2,4-dihydroxybenzoates involving the cycloaddition of methoxycyclohexadienes with substituted propiolic esters. The factors influencing the regiochemistry of addition are also discussed. This methodology is extended to the synthesis of $(a)$ two dihydroisocoumarins; $( \pm)$-mellein (12) and ( $\pm$ )-6-methoxymellein (14) and (b) two 2,5-dialkylresorcinols namely stemphol (24b) and the antibiotic DB 2073 (24d). Preliminary results of this investigation have been reported ${ }^{12-14}$ earlier.

## Results and Discussion

Synthesis of 6-Alkylsalicylates and 6-Alkyl-2,4-dihydroxy-benzoates.-Methoxycyclohexa-1,4-dienes (1a-e) were obtained from anisoles by reduction with an alkali metal and an alcohol in liquid ammonia. ${ }^{15}$ These unconjugated dienes are readily equilibrated to the corresponding 1 -methoxycyclohexa-1,3-dienes ( $\mathbf{2 a - e}$ ) using potassium amide in liquid ammonia, ${ }^{16}$ or tris(triphenylphosphine)rhodium chloride in dichloromethane ${ }^{17}$ or under the catalytic influence of dichloromaleic anhydride. ${ }^{18}$ Since pure conjugated dienes are difficult to obtain, an equilibrium mixture containing $20 \%$ of the unconjugated isomer has been used. Cycloadditions were carried out by heating either (a) the unconjugated diene (1) and the acetylenic dienophile (3)-(5) in a sealed tube at $180^{\circ} \mathrm{C}$ for 30 h ; (b) by heating a mixture of the unconjugated diene (1) and the dienophile (3)-(5) in presence of a catalytic amount of dichloromaleic anhydride at $180^{\circ} \mathrm{C}$ for 20 h ; or (c) by heating an equilibrated mixture of the conjugated and unconjugated dienes (1) and (2) with the dienophiles (3)-(5) at $180^{\circ} \mathrm{C}$ for 16 h . The temperature was then raised to $200^{\circ} \mathrm{C}$ for 4 h and the resulting mixture was distilled to yield the product in $65-70 \%$ yield. The reaction is fairly general and facile and only one regioisomer was obtained. The intermediate adducts (6) or (8) were not isolated.
Reaction of the equilibrated mixture of 1-methoxycyclohexa1,4 - and $-1,3$-dienes (1a) + (2a) with methyl tetrolate (3) afforded methyl 2-methoxy-6-methylbenzoate (7a). ${ }^{19}$ The structure of the product was deduced from its analytical and spectral

(1)

(2)

(3) $R^{3}=R^{4}=M e$
a: $R^{1}=R^{2}=H$
b : $R^{1}=O M e, R^{2}=H$
(4) $R^{3}=E t, R^{4}=B u$
(5) $R^{3}=E t, R^{4}=C_{5} H_{11}$
c: $R^{1}=H, R^{2}=O M e$
d; $R^{1}=M e, R^{2}=H$
e ; $R^{1}=H, R^{2}=M e$
f: $R^{1}=H, R^{2}=C_{8} H_{17}$

(8)

(9)

$$
\begin{array}{lll}
\text { a: } & R^{1}=H, & R^{2}=R^{3}=R^{4}=M e \\
b ; & R^{1}=H, & R^{2}=C_{8} H_{17}, R^{3}=E t, R^{4}=B u
\end{array}
$$



> (10) $\mathrm{R}=\mathrm{H}$
> (11) $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$

(16)

> (12) $R^{1}=O H, R^{2}=H$
> (13) $R^{1}=O M e, R^{2}=H$
> (14) $R^{1}=O H, R^{2}=O M e$
> (15) $R^{1}=R^{2}=O M e$

(17)
data and confirmed by comparison with an authentic sample. Similarly, methyl 2,4-dimethoxy-6-methylbenzoate (7b), methyl 2,5-dimethoxy-6-methylbenzoate (7c), and methyl 2-methoxy-4,6-dimethylbenzoate ( $\mathbf{7 d}$ ) were obtained by treating the dienes (2b), (2c), and (2d) with methyl tetrolate (3). Reaction of the diene ( $\mathbf{2 b}$ ) with ethyl hept-2-ynoate (4) and ethyl oct-2-ynoate (5) afforded ethyl 2-butyl-4,6-dimethoxybenzoate (7f) and ethyl 2,4-dimethoxy-6-pentylbenzoate ( 7 g ) respectively.

Although the Diels-Alder reaction between the acetylenic esters and 1-methoxy-, 1,3-dimethoxy-, and 1-methoxy-3-methyl-cyclohexa-1,3- or $-1,4$-dienes is regiospecific and yielded single products, the cycloaddition with a 4 -alkyl-1-methoxycyclohexadiene afforded a ( $1: 1$ ) mixture of the regiomers. Thus a mixture of methyl 2-methoxy-5,6-dimethylbenzoate (7e) and methyl 3 -methoxy-2,6-dimethylbenzoate (9a) was obtained from 1-methoxy-4-methylcyclohexa-1,3-diene (2e) and methyl tetrolate (3). Similar reaction of the diene (2f) with ethyl hept-2ynoate (4) yielded a mixture of the benzoates ( $\mathbf{7 h}$ ) and ( $\mathbf{9 b}$ ), identified from their spectral data. The loss of regiospecificity in these cases may be attributed to the presence of two electron donating groups at the 1,4 -position of the conjugated diene competing in the cycloaddition with acetylenic systems. Unlike this, cycloaddition of (1e) or ( $\mathbf{2 e}$ ) with olefinic dienophiles such as methyl vinyl ketone or acrolein results in the regiospecific formation of a single product.

Hydrolysis of the esters (7) with potassium hydroxide ${ }^{20}$ in dimethyl sulphoxide gave the corresponding benzoic acids in good yield. Thus 2-methoxy-6-methylbenzoic acid ${ }^{19}$ (7i), 2,4-dimethoxy-6-methylbenzoic acid ${ }^{21}(7 \mathbf{j})$, and 2-butyl-4,6-dimethoxybenzoic acid ${ }^{22}(\mathbf{7 k})$ were obtained from (7a), (7b), and (7f), respectively.

Synthesis of $( \pm)$-Mellein (12) and ( $\pm$ )-6-Methoxymellein (14).-We next turned our attention to the synthesis of naturally occurring dihydroisocoumarins based on the methodology of constructing the aromatic residue from 1-methoxy-cyclohexa-1,3-dienes and suitable acetylenic dienophiles. (-)Mellein (12), ( - )-6-methoxymellein (14), and ( - )-5-methylmellein (16) were isolated from Aspergillus mellus, ${ }^{23}$ carrots, ${ }^{24}$ and Fusicoccum amygdalate ${ }^{25}$ respectively. Although the structure of these compounds were deduced from spectral data and confirmed by synthesis, an alternative method of preparation of these compounds is reported here.

The required acetylenic ester (11) was prepared from 4-tetra-hydropyran-2-yloxypent-1-yne (10). ${ }^{26}$ Reaction of (10) with butyl-lithium followed by quenching with ethyl chloroformate afforded the ester (11) in $60 \%$ yield. An Alder-Rickert reaction between the diene (1a) and the acetylenic ester (11) in the presence of DCMA at $180^{\circ} \mathrm{C}$ for 30 h afforded mellein methyl ether (13) in $52 \%$ yield. The direct isolation of (13) from (1a) and (11) involves initial formation of the adduct [61; $R^{1}=R^{2}=H$, $\mathrm{R}^{3}=\mathrm{Et}, \mathrm{R}^{4}=\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OTHP}) \mathrm{Me}$ ] which undergoes aromatization to (71). At higher temperature the tetrahydropyranyl ether undergoes fission resulting directly in the formation of the lactone (13). Similar reaction of the diene (1b) with (11) yielded 6 -methoxymellein methyl ether (15). Demethylation of (13) with HBr in acetic acid and of (15) with $\mathrm{BBr}_{3}$ in methylene dichloride gave mellein (12) and 6 -methoxymellein (14) respectively. An attempt to synthesize 5 -methylmellein (16) by this strategy from the diene (1e) and the dienophile (11) resulted in a mixture of products which on alkaline hydrolysis followed by acidification afforded 2,5-dimethyl-2,3-dihydrobenzofuran-4-carboxylic acid (17) as the only identifiable product. Formation of the acid can
be explained as due to a reversal of the regiochemistry in the cycloaddition resulting in an adduct of the type (8) which on aromatization ${ }^{29}$ followed by hydrolysis yields the acid (17).

Synthesis of 2,5-Dialkylresorcinols: Stemphol (24b), DB 2073 (24d), and Regioisomers (24a) and (24c).-Stemphol (24b) ${ }^{\mathbf{3 2}}$ is a metabolite isolated from Stemphilium majusculum and DB 2073 (24d) ${ }^{33}$ was isolated from Pseudomonas sp. B-9004. Their structures have been deduced from spectral data and confirmed by synthesis. ${ }^{34}$

While contemplating the synthesis of stemphol and DB 2073 we felt that the shortest approach would involve a regiospecific Alder-Rickert reaction between a 6 -alkyl- 1,5 -dimethoxycyclo-hexa-1,4-diene (19) and a substituted prop-2-ynyl aldehyde (21). The resulting 3,6-dialkyl-2,4-dimethoxybenzaldehyde (22) would in two steps, namely decarbonylation followed by demethylation, give the final product.

(Ia)

(18)

$$
\begin{array}{ll}
\text { a }: R=P r \\
\mathbf{b} ; & R=B u \\
\text { c }: R=C_{5} H_{11} \\
\text { d: } & R=C_{6} H_{13}
\end{array}
$$

(21)

The required dienes (19a-d) were obtained by alkylation ${ }^{31}$ of 1,5 -dimethoxycyclohexa-1,4-diene with alkyl halides. Thus treatment of (1a) with 1.1 equiv. of potassium amide in liquid ammonia generated the mesomeric anion (18), which was alkylated with an alkyl bromide (propyl, butyl, pentyl, and hexyl). Excellent yields ( $75-80 \%$ ) of the required 6 -alkyl-1,5-dimethoxycyclohexa-1,4-dienes (19) were obtained.

The dienophiles, namely the substituted prop-2-ynyl aldehydes ( $21 \mathrm{a}-\mathrm{d}$ ) were prepared by known procedures. ${ }^{35,36}$ Thus prop-2-ynyl alcohol on treatment with 2 mol equiv. of lithium amide forms the dianion which is $C$-alkylated by treatment with alkyl bromides thereby affording substituted propynyl alcohols ( $\mathbf{2 0 a}$ - d) in very good yields ( $70-80 \%$ ). The acetylenic alcohols, thus obtained were converted into the corresponding aldehydes by oxidation with manganese dioxide. ${ }^{37}$

(22)

(23)

(24)

The Alder-Rickert reactions of the diene with the corresponding dienophiles (19a) $+(\mathbf{2 1 d}), \quad(\mathbf{1 9 b})+(21 c)$, $(19 c)+(21 b),(19 d)+(21 a)$ were separately carried out by heating the mixtures with a trace amount of dichloromaleic anhydride in an evacuated sealed tube at $180-190^{\circ} \mathrm{C}$. The benzaldehydes ( $22 \mathrm{a}-\mathrm{d}$ ) were obtained in $60-65 \%$ yield and were decarbonylated by refluxing with tris(triphenylphosphine)-
chlororhodium ${ }^{38}$ in toluene. Excellent yields of the 2,5dialkylresorcinol dimethyl ethers (23a-d) were obtained ( $80-90 \%$ ). Demethylation ${ }^{39}$ of (23) by silicon tetrachloride and sodium iodide in refluxing toluene-acetonitrile gave stemphol (24b), DB-2073 (24d), and their isomers (24c) and (24a) in very good yields.

Thus a simple strategy for the construction of aromatic compounds of polyketide origin has been developed. Despite some limitations, this methodology is general and can be used for the synthesis of a number of natural products of fungal and plant origin.

## Experimental

M.p.s. and b.p.s. are uncorrected. I.r. spectra were recorded as liquid films or Nujol mulls on a Perkin-Elmer, Model 397 instrument. The ${ }^{1} \mathrm{H}$ n.m.r. spectra were recorded on Varian T-60, JEOL FX-90Q, or Bruker WH 270 MHz spectrometers. Chemical shifts are given in p.p.m. ( $\delta$ ) downfield from tetramethylsilane (TMS) as internal standard with the usual abbreviations. Analytical and preparative t.l.c. were carried out on glass plates coated with silica gel ( 0.2 mm ; commercial grade containing $10 \%$ calcium sulphate binder) activated at $70-90^{\circ} \mathrm{C}$ for 12 h prior to use. In all the sealed-tube reactions, the reactants were taken in thick-walled Pyrex glass tube and sealed in vacuo prior to heating.

Preparation of 1-Methoxycyclohexa-1,4-dienes (1).-Sodium $(0.1 \mathrm{~mol})$ was added in small pieces to a rapidly stirred mixture of the aromatic ether ( 0.04 mol ), ethanol ( 20 ml ), and redistilled ammonia ( 200 ml ). After the mixture had been stirred for 15 min , excess of the metal was destroyed by the addition of methanol ( 10 ml ) and ammonia was allowed to evaporate. The residue was treated with water $(100 \mathrm{ml})$ and extracted with hexane ( $3 \times 50 \mathrm{ml}$ ). The combined extracts were washed with water and brine, dried, and evaporated to afford the 1-methoxycyclohexa-1,4-dienes ( $90 \%$ ); $v_{\text {max. }} 1660$ and 1690 $\mathrm{cm}^{-1}$. Thus 1-methoxycyclohexa-1,4-diene (1a), 1,3-dimethoxy-cyclohexa-1,4-diene (1b), 1,4-dimethoxycyclohexa-1,4-diene (1c), 1-methoxy-5-methylcyclohexa-1,4-diene (1d), 1-methoxy-4-methylcyclohexa-1,4-diene (1e), and 1-methoxy-4-octyl-cyclohexa-1,4-diene (1f) were prepared ${ }^{15}$ from anisole, 1,3dimethoxybenzene, 1,4-dimethoxybenzene, 3-methylanisole, 4 -methylanisole, and 4-octylanisole respectively.

Preparation of 1-Methoxycyclohexa-1,3-dienes (2).-Potassium amide was prepared by adding anhydrous ferric chloride ( 5 mg ) to a stirred mixture of potassium ( 300 mg ) in liquid ammonia ( 100 ml ). A solution of 1 -methoxycyclohexa-1,4-diene (1a) in dry ether ( 10 ml ) was then added under nitrogen to the rapidly stirred mixture of potassium amide in liquid ammonia and after 20 min , the dark red solution was quenched with solid ammonium chloride ( 5 g ). Ammonia was allowed to evaporate and the residue was diluted with water ( 100 ml ) and extracted with ether $(3 \times 50 \mathrm{ml})$. The dried ethereal extracts on evaporation gave an equilibrium mixture containing 1-methoxycyclo-hexa-1,3-diene (2a) ( $80 \%$ ) and 1-methoxycyclohexa-1,4-diene (1a) $(20 \%)$ in $75 \%$ yield which was distilled in vacuo. Thus 1-methoxycyclohexa-1,3-diene (2a), 1,3-dimethoxycyclohexa-1,3diene (2b), 1-methoxy-3-methylcyclohexa-1,3-diene (2d), and 1-methoxy-4-methylcyclohexa-1,3-diene (2e), were prepared ${ }^{16}$ and these conjugated dienes showed characteristic spectral absorptions $\lambda_{\text {max. }} 274 \mathrm{~nm}(\varepsilon 9800)$; $v_{\text {max. }} 1610$ and $1660 \mathrm{~cm}^{-1}$.

Preparation of Acetylenic Dienophiles (3), (4), and (5).Methyl but-2-ynoate ${ }^{27}(\mathbf{3})$, ethyl hept-2-ynoate ${ }^{28}(4)$, ethyl oct2 -ynoate ${ }^{28}$ (5), and ethyl 4-tetrahydropyran-2-yloxyhex-2ynoate ${ }^{28}(\mathbf{1 1 )}$ were prepared according to literature methods.

Preparation of Substituted 2-Methoxybenzoates (7a-h).Three different procedures were adopted. Method A. The 1-methoxycyclohexa-1,4-diene ( $\mathbf{1 a}-\mathbf{f}$ ) and the acetylenic compound (3), (4), or (5) were mixed in a glass tube under nitrogen. After evacuation the tube was sealed and heated to $180^{\circ} \mathrm{C}$ for 30 h . The temperature was further raised to $200^{\circ} \mathrm{C}$ and kept for 4 h . The crude product obtained was sublimed at $180-190^{\circ} \mathrm{C}$ at 3 mmHg . 2-Methoxybenzoates ( $\mathbf{7 a - h}$ ) were obtained in yields in the range $65-75 \%$.

Method B. The 1-methoxycyclohexa-1,4-diene (1a-f), and the appropriate acetylenic compound were heated with dichloromaleic anhydride ${ }^{30}(5 \mathrm{mg})$ at $180^{\circ} \mathrm{C}$ for 20 h , and finally at $200^{\circ} \mathrm{C}$ for 4 h under a nitrogen atmosphere. The crude product was diluted with chloroform ( 20 ml ), washed with $1 \%$ aqueous sodium hydroxide, water, and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to afford the corresponding 2-methoxybenzoate ( $63-70 \%$ ). These compounds were identical in all respects with compounds obtained by Method A.

Method C. The equilibrated mixture of methoxycyclohexa1,4 - and -1,3-dienes, and the acetylenic dienophile were heated at $180^{\circ} \mathrm{C}$ for 16 h under a nitrogen atmosphere. The reaction temperature was then raised to $200^{\circ} \mathrm{C}$ and maintained for 4 h . The crude product was purified by column chromatography to afford compounds identical with those obtained by Methods A and B; yields $65-70 \%$.

Methyl 2-methoxy-6-methylbenzoate (7a). This was obtained from (1a) or (2a) and (3) as per method A or B or C as described above: b.p. $120^{\circ} \mathrm{C}$ at 10 mmHg (lit., ${ }^{19}$ b.p. $140^{\circ} \mathrm{C}$ at 18 mmHg ) (Found: C, 66.6; H, 6.7. Calc. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$ : C, $66.67 ; \mathrm{H}, 6.67 \%$ ); $v_{\text {max. }} 1725,1610$, and $1590 \mathrm{~cm}^{-1} ; \delta 2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 3.72(3$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 6.7(2 \mathrm{H}, \mathrm{dd}, J 8$ and 3 Hz , $o$ - and $p-\mathrm{H}$ to $\left.\mathrm{OCH}_{3}\right)$, and $7.1(1 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, m-\mathrm{H}$ to OMe$)$.

Methyl 2,4-dimethoxy-6-methylbenzoate (7b). Prepared from (1b) or (2b) and (3) as per method A or B or C; b.p. $135^{\circ} \mathrm{C}$ at 10 mmHg (Found: C, 62.8; H, 6.71. Calc. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C}, 62.85$; $\mathrm{H}, 6.7 \%)$. $v_{\text {max. }} 1725,1610$, and $1590 \mathrm{~cm}^{-1} ; \delta 2.28(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArCH}_{3}\right), 3.72\left(6 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, and 6.22 ( $2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$ ).

Methyl 2,5-dimethoxy-6-methylbenzoate (7c). This was prepared from (1c) and (3) according to method A and crystallized from methanol, m.p. $71^{\circ} \mathrm{C}$ (Found: C, 62.8; H, 6.8. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $\mathrm{C}, 62.85 ; \mathrm{H}, 6.7 \%$ ); $v_{\text {max. }} 1730$ and $1600 \mathrm{~cm}^{-1} ; \delta 2.22$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 3.72\left(6 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, and $6.78(2 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}, \mathrm{ArH})$.

Methyl 2-methoxy-4,6-dimethylbenzoate (7d). Obtained from (1d) or (2d) and (3) as per method A or B or C: b.p. $125^{\circ} \mathrm{C}$ at 8 mmHg (Found: $\mathrm{C}, 67.85 ; \mathrm{H}, 7.2 . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$ requires C, $68.04 ; \mathrm{H}$, $7.22 \%$ ); $v_{\text {max. }} 1725,1610$, and $1590 \mathrm{~cm}^{-1} ; \delta 2.2\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right)$ and $6.52(2 \mathrm{H}, \mathrm{brd}, \mathrm{Ar} \mathrm{H})$.

Methyl 2-methoxy-5,6-dimethylbenzoate (7e) and methyl 3-methoxy-2,6-dimethylbenzoate (9a). Obtained from (1e) or (2e) and (3) as per method A or B or C; b.p. $130^{\circ} \mathrm{C}$ at 100 mmHg (Found: C, 68.0; H, 7.1. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 68.04 ; \mathrm{H}, 7.11 \%$ ); $v_{\text {max. }} 1725$ and $1590 \mathrm{~cm}^{-1} ; \delta 2.18$ and $2.25\left(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{ArCH}_{3}\right)$, 3.75 and $3.8\left(3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{OCH}_{3}\right), 3.85$ and $3.9\left(3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, and $6.5-7.2(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ (integration of peaks at $2.18,2.25,3.7$ and 3.8 showed a $1: 1$ ratio).

Ethyl 2-butyl-4,6-dimethoxybenzoate (7f). Obtained from (1b) and (3) as per method A or B; b.p. $140-142^{\circ} \mathrm{C}$ at 2 mmHg (Found: C, 67.6; H, 8.2. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}$ requires C, 67.67; H, $8.27 \%$ ); $v_{\text {max. }} 1730,1610$, and $1590 \mathrm{~cm}^{-1} ; \delta 0.8-1.68(12 \mathrm{H}, \mathrm{m}), 2.5(2 \mathrm{H}$, $\mathrm{t}, J 7 \mathrm{~Hz}$, benzylic), $3.72\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.22(2 \mathrm{H}, \mathrm{q}, J 8 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right)$, and $6.22(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$.
Ethyl 2-butyl-6-methoxy-3-octylbenzoate (7h) and ethyl 2-butyl-3-methoxy-6-octylbenzoate (9b). Obtained from (1f) and (3) as per method A or B in $40 \%$ yield; b.p. $165^{\circ} \mathrm{C}$ at 3 mmHg (Found: C, 75.85; H, 9.95. $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.72 ; \mathrm{H}$, $10.04 \%)$; $v_{\text {max. }} 1725,1610$, and $1590 \mathrm{~cm}^{-1} ; \delta 0.8-2.4(29 \mathrm{H}, \mathrm{m})$,
3.3 and $3.58\left[3 \mathrm{H}, 2 \mathrm{~s}(3: 1), \mathrm{OCH}_{3}\right], 4.15(2 \mathrm{H}, \mathrm{q}, J 8 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right)$, and $6.4-7.4(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

General Procedure ${ }^{20}$ for the Hydrolysis of Esters.--The ester $(200 \mathrm{mg})$ was stirred and heated with potassium hydroxide ( 3 g ) in dimethyl sulphoxide ( 30 ml ) at $70^{\circ} \mathrm{C}$ under nitrogen for 4 h . The reaction mixture was cooled, diluted with water, and acidified with 4 m HCl . After saturation with sodium chloride, the mixture was extracted with chloroform ( $3 \times 25 \mathrm{ml}$ ), washed with water and brine, dried, and evaporated to give the corresponding acids.

2-Methoxy-6-methylbenzoic acid (7i). M.p. 139- $140^{\circ} \mathrm{C}$ (lit., ${ }^{19}$ m.p. $140{ }^{\circ} \mathrm{C}$ ) (Found: C, 65.0; H, 6.0. Calc. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$ : C, $65.06 ; \mathrm{H}, 6.02 \%$ ), $\mathrm{v}_{\text {max. }} 1690,1610$, and $1590 \mathrm{~cm}^{-1} ; \delta 2.28(3$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.8(2 \mathrm{H}, \mathrm{dd}, J 8$ and $3 \mathrm{~Hz}, \mathrm{ArH})$, $7.25(1 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, \mathrm{ArH})$ and $10.2\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{CO}_{2} \mathrm{H}\right)$.

2,4-Dimethoxy-6-methylbenzoic acid (7j), M.p. $139^{\circ} \mathrm{C}$ (Lit., ${ }^{21}$ m.p. $140^{\circ} \mathrm{C}$ ) (Found: C, $60.8 ; \mathrm{H}, 6.08$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$ : C, $61.02 ; \mathrm{H}, 6.12 \%$ ); $v_{\text {max. }} .1690,1610$, and $1590 \mathrm{~cm}^{-1} ; \delta 2.28(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 3.72\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.22(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, and $9.8(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{CO}_{2} \mathrm{H}$ ).

2-Butyl-4,6-dimethoxybenzoic acid (7k). M.p. $49-50^{\circ} \mathrm{C}$ (lit. ${ }^{22}$ m.p. $53^{\circ} \mathrm{C}$ ) (Found: C, $65.5 ; \mathrm{H}, 7.7$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}$ : C, $65.5 ; \mathrm{H}, 7.56 \%$ ); $v_{\text {max. }} 1690,1610$, and $1590 \mathrm{~cm}^{-1} ; \delta 1-1.7(9$ $\mathrm{H}, \mathrm{m}$, aliphatic), $2.5(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}$, benzylic), $3.72(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 6.22(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, and $9.5\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right)$.

4-Tetrahydropyran-2-yloxypent-1-yne (10). A mixture of pent-1-yn-4-ol ( $4.2 \mathrm{~g}, 0.05 \mathrm{~mol}$ ), dihydropyran ( $5 \mathrm{~g}, 0.06 \mathrm{~mol}$ ), and toluene- $p$-sulphonic acid ( 5 mg ) in dry ether ( 20 ml ) was stirred for 2 h and left overnight. The mixture was then poured into dilute aqueous sodium hydrogen carbonate and extracted with ether $(3 \times 25 \mathrm{ml})$. The combined ether extracts were washed with water and brine, dried, and evaporated to afford a liquid which was distilled, b.p. $58^{\circ} \mathrm{C}$ at 5 mmHg (Found: C, $71.35 ; \mathrm{H}, 9.4 . \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 71.4 ; \mathrm{H}, 9.5 \%$ ); $v_{\text {max. }} 3330$ $(\equiv \mathrm{CH}), 2120(\mathrm{C} \equiv \mathrm{C})$, and $1450 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}) ; \delta 4.7(1 \mathrm{H}, \mathrm{m})$, $3.94-3.4(3 \mathrm{H}, \mathrm{m}), 2.34(2 \mathrm{H}, \mathrm{m}), 1.8-1.4(6 \mathrm{H}, \mathrm{m})$, and 1.18 $(3 \mathrm{H}, \mathrm{dd}, J 6$ and 5 Hz ).

Ethyl 5-Tetrahydropyran-2-yloxyhex-2-ynoate (11).-To a solution of butyl-lithium ( 20 mmol ) in ether ( 100 ml ) was added 4-tetrahydropyran-2-yloxypent-1-yne (10) ( $3.36 \mathrm{~g}, 20 \mathrm{mmol}$ ) in dry ether ( 20 ml ) at $-50^{\circ} \mathrm{C}$. After 15 min ethyl chloroformate $(2.71 \mathrm{~g}, 25 \mathrm{mmol})$ was added, in one portion and the temperature maintained at $-30^{\circ} \mathrm{C}$ for 5 h . After warming to room temperature the mixture was poured into ice-cold water $(50 \mathrm{ml})$ and immediately extracted with ether $(3 \times 50 \mathrm{ml})$. The combined ethereal extracts were washed with water, dried, and evaporated under reduced pressure and the residual liquid ( 3.12 g ) was purified by column chromatography using silica gel (ether-hexane; 1:1) (Found: C, 68.85; H, 6.5. Calc. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}: \mathrm{C}, 68.73 ; \mathrm{H}, 6.49 \%$ ); $v_{\text {max. }} 2240(\mathrm{C} \equiv \mathrm{C}), 1720(\mathrm{C}=\mathrm{O})$, and $1455 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}) ; \delta 4.8(1 \mathrm{H}, \mathrm{m}), 4.2(2 \mathrm{H}, \mathrm{br}), 4.4(3 \mathrm{H}, \mathrm{m})$, $2.5(2 \mathrm{H}, \mathrm{m}), 1.8-1.4\left(6 \mathrm{H}, \mathrm{br}\right.$, aliphatic $\left.\mathrm{CH}_{2}\right)$, and $1.35(6 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}$ ).

Mellein Methyl Ether (13).-1-Methoxycyclohexa-1,3-diene (2a) ( $550 \mathrm{mg}, 5 \mathrm{mmol}$ ) and ethyl 5-tetrahydropyran-2-yloxy-hex-2-ynoate (11) ( $1.2 \mathrm{~g}, 5 \mathrm{mmol}$ ) were mixed and heated under nitrogen at $175-180^{\circ} \mathrm{C}$ for 30 h and at $200^{\circ} \mathrm{C}$ for 4 h . The product was then sublimed to give a pale yellow oil which was dissolved in $10 \%$ aqueous ethanolic $\mathrm{KOH}(25 \mathrm{ml})$ and refluxed for 30 min . The mixture was acidified with hydrochloric acid and extracted with chloroform ( $2 \times 50 \mathrm{ml}$ ). The chloroform extract was washed with water and brine, dried, and evaporated to afford a yellow oil which was purified by column chromatography (silica gel, ethyl acetate-hexane, 1:9). The pale yellow gum ( $500 \mathrm{mg}, 52 \%$ ) crystallized from ether-hexane ( $1: 4$ ),
m.p. $69^{\circ} \mathrm{C}$ (lit., ${ }^{23} 67^{\circ} \mathrm{C}$ ) (Found: C, 68.7; H, 6.4. Calc. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}: \mathrm{C}, 68.73 ;, 6.29 \%$ ); $v_{\text {max. }}$ (Nujol) 1720 and $1605 \mathrm{~cm}^{-1}$; $\delta 1.5\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.93\left(2 \mathrm{H}, \mathrm{d}, \mathrm{ArCH}_{2} \mathrm{CH}\right), 3.9(3 \mathrm{H}, \mathrm{s}$, ArOMe), $4.64(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.7(2 \mathrm{H}, \mathrm{dd}, J 7$ and $3 \mathrm{~Hz}, o-$ and $p-\mathrm{H}$ to $\left.\mathrm{OCH}_{3}\right)$, and $7.1(1 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, m$ - H to OMe$)$.
( $\pm$ ) Mellein (12).-The methyl ether (13) (100 mg) was refluxed with HBr in acetic acid $(5 \% ; 10 \mathrm{ml})$ for 5 h . The reaction mixture was diluted with water $(50 \mathrm{ml})$ and extracted with ether $(3 \times 25 \mathrm{ml})$ and the ethereal extracts were thoroughly washed with water and dried. Removal of the solvent afforded a crystalline mass ( 90 mg ) which was recrystallized from etherhexane. Mellein was obtained as white crystals, m.p. $39^{\circ} \mathrm{C}$ (lit., ${ }^{23}$ m.p. $39^{\circ} \mathrm{C}$ ) (Found: C, 67.5; H, 5.6. $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3}$ requires C, 67.4 and $\mathrm{H}, 5.66 \%$ ).

Methyl Ether of 6-Methoxymellein (15).-1,3-Dimethoxy-cyclohexa-1,3-diene ( $\mathbf{2 b}$ ) ( $700 \mathrm{mg}, 50 \mathrm{mmol}$ ) and ethyl 5 -tetra-hydropyran-2-yloxyhex-2-ynoate (11) ( $1.2 \mathrm{~g}, 50 \mathrm{mmol}$ ) were heated together under nitrogen at $180^{\circ} \mathrm{C}$ for 35 h and then at $200^{\circ} \mathrm{C}$ for 4 h . The product was then distilled $150-160^{\circ} \mathrm{C}$ at 2 mmHg . The yellow viscous oil was taken up in $10 \%$ aqueous alcoholic KOH and refluxed for 1 h . The cooled solution was acidified and extracted with chloroform ( $3 \times 50 \mathrm{ml}$ ) and the combined extracts were washed with water and brine, and dried. The crude product (15) ( $65 \%$ ) was purified by t.l.c. (chloroformmethanol, $96.5: 3.5$ ) to give a pale yellow gum which was crystallized from ethyl acetate-hexane (1:4), m.p. $126-127^{\circ} \mathrm{C}$ (lit., ${ }^{24}$ m.p. $126-128^{\circ} \mathrm{C}$ ) (Found: C, 64.8; H, 6.4. Calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C}, 64.85 ; \mathrm{H}, 6.43$ ); $v_{\text {max. }}$ (Nujol) 1710,1605 , and $1463 \mathrm{~cm}^{-1} ; \delta 1.42\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3}\right), 2.8\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.83(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArOCH}_{3}\right), 3.9\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 4.45(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, and 6.33 ( 1 H , split singlets, ArH).
( $\pm$ )-6-Methoxymellein (14).-A solution of the ether (15) $(100 \mathrm{mg})$ in methylene dichloride $(10 \mathrm{ml})$ cooled to $-10^{\circ} \mathrm{C}$ was added to a cooled solution of $\mathrm{BBr}_{3}(0.4 \mathrm{ml})$ in methylene dichloride ( 10 ml ) under nitrogen. The mixture was stirred for 24 h , poured into water, and extracted with chloroform. Removal of the solvent gave ( $\pm$ )-6-methoxymellein (14) as crystals ( 92 mg ), m.p. $74{ }^{\circ} \mathrm{C}$ (lit., ${ }^{\frac{4}{4}} \mathrm{~m} . \mathrm{p} .76^{\circ} \mathrm{C}$ ). The i.r. and ${ }^{1} \mathrm{H}$ n.m.r. data were identical with published values (Found: C, $63.35 ; \mathrm{H}, 5.8$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}: \mathrm{C}, 63.45$ and $\mathrm{H}, 5.8 \%$ ).

2,3,-Dihydro-2,6-dimethylbenzofuran-4-carboxylic Acid (17).-A mixture of 1 -methoxy-4-methylcyclohexa-1,4-diene (1e) $(620 \mathrm{mg})$, ethyl 5 -tetrahydropyran-2-yloxyhex-2-ynoate (11) ( 1.2 g ), and dichloromaleic anhydride ( 5 mg ) was heated in a sealed tube at $180^{\circ} \mathrm{C}$ for 36 h . After this the reaction mixture was refluxed with $10 \%$ ethanolic potassium hydroxide ( 30 ml ) and then extracted with ether $(2 \times 25 \mathrm{ml})$. The aqueous extract was neutralized with dilute HCl and extracted with ethyl acetate ( $3 \times 25 \mathrm{ml}$ ). The combined ethyl acetate extracts were washed with water, dried, and evaporated to give a pale yellow mass which was recrystallized from benzene to give the benzofurancarboxylic acid (17) ( $480 \mathrm{mg}, 50 \%$ ) as colourless prisms, m.p. $134-136^{\circ} \mathrm{C}$ (Found: C, 68.65; H, 5.8. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$ requires C, 68.8 and $\mathrm{H}, 5.6 \%$ ); $v_{\text {max. }}$. (Nujol) $3500(\mathrm{OH}), 1690$ $(\mathrm{C}=\mathrm{O})$, and $1600 \mathrm{~cm}^{-1}$ (aromatic); $\delta 1.4(3 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}), 2.5$ $(3 \mathrm{H}, \mathrm{s}), 3.38(2 \mathrm{H}, \mathrm{m}), 4.9(1 \mathrm{H}, \mathrm{m})$, and $6.9(2 \mathrm{H}, \mathrm{dd}, J 8$ and 12 Hz ).

Alkylation of 1,5-Dimethoxycyclohexa-1,4-dienes (19a-d).-1,5-Dimethoxycyclohexa-1,4-diene ( 0.02 mol ) was added with stirring to potassium amide in liquid ammonia [prepared from liquid ammonia ( 80 ml ), $\mathrm{FeCl}_{3}$ (catalytic quantity), and potassium ( 500 mg )] to give a dark red solution. After 10 min of vigorous stirring, the reaction mixture was quenched with alkyl bromide (excess). Ammonia was slowly evaporated off and the residue diluted with water and extracted with ether. The extract
was washed until neutral with water and then with brine; it was then dried and evaporated under reduced pressure and the residue distilled (yields $75-80 \%$ ).

1,5-Dimethoxy-6-propylcyclohexa-1,4-diene (19a). B.p. $92{ }^{\circ} \mathrm{C}$ at 3 mmHg (Found: $\mathrm{C}, 72.45 ; \mathrm{H}, 9.9 . \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C , $72.53 ; \mathrm{H}, 9.9 \%$ ); $v_{\text {max. }} 1690$ and $1660 \mathrm{~cm}^{-1}$ (diene); $\delta 0.95(3 \mathrm{H}, \mathrm{t}$, $\left.J 7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.2-1.6(5 \mathrm{H}, \mathrm{m}$, aliphatic CH$), 2.8(2 \mathrm{H}, \mathrm{s}$, doubly allylic $\left.\mathrm{CH}_{2}\right), 3.5\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right)$, and $4.6(2 \mathrm{H}, \mathrm{m}$, olefinic H$)$.

6-Butyl-1,5-dimethoxycyclohexa-1,4-diene (19b). B.p. 98$102^{\circ} \mathrm{C}$ at 3 mmHg (Found: $\mathrm{C}, 73.5 ; \mathrm{H}, 10.2 . \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 73.47 ; \mathrm{H}, 10.2 \%$ ); $v_{\text {max. }} 1695$ and $1660 \mathrm{~cm}^{-1}$ (diene); $\delta 0.9$ (3 $\left.\mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.2-1.9(7 \mathrm{H}, \mathrm{m}$, aliphatic CH$), 2.8(2 \mathrm{H}, \mathrm{s}$, doubly allylic $\left.\mathrm{CH}_{2}\right), 3.5\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right)$, and $4.6(2 \mathrm{H}, \mathrm{m}$, olefinic H ).

1,5-Dimethoxy-6-pentylcyclohexa-1,4-diene (19c). B.p. 114$115^{\circ} \mathrm{C}$ at 3 mmHg (Found: C, 74.35; H, 10.5. $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 74.28 ; \mathrm{H}, 10.48 \%$ ); $v_{\text {max. }} 1690$ and $1660 \mathrm{~cm}^{-1}$ (diene); $\delta 0.9\left(3 \mathrm{H}, \mathrm{t}, J 7.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.2-1.9(9 \mathrm{H}, \mathrm{m}$, aliphatic H$), 2.8$ $\left(2 \mathrm{H}, \mathrm{s}\right.$, doubly allylic $\left.\mathrm{CH}_{2}\right), 3.5\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right)$, and 4.6 ( $2 \mathrm{H}, \mathrm{m}$, olefinic H).

6-Hexyl-1,5-dimethoxycyclohexa-1,4-diene (19d)-B.p. $127^{\circ} \mathrm{C}$ at 3 mmHg (Found: C, 74.8; H, 10.65. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 10.71 \%$ ) $v_{\text {max. }} 1690$ and $1665 \mathrm{~cm}^{-1}$ (diene); $\delta$ $0.9\left(3 \mathrm{H}, \mathrm{t}, J 7.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.2-1.9(11 \mathrm{H}, \mathrm{m}$, aliphatic H$), 2.8$ $\left(2 \mathrm{H}, \mathrm{s}\right.$, doubly allylic $\left.\mathrm{CH}_{2}\right), 3.5\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right)$, and 4.6 ( $2 \mathrm{H}, \mathrm{m}$, olefinic H ).

Preparation of Alk-2-yn-1-ols (20a-d).—Prop-2-ynyl alcohol $(5 \mathrm{~g}, 0.09 \mathrm{~mol})$ in dry THF ( 15 ml ) was added to a solution of lithium amide in liquid ammonia [prepared from ammonia ( 300 ml ), $\mathrm{FeCl}_{3}$ (catalytic quantity), and lithium ( $\left.1.49 \mathrm{~g}, 0.2 \mathrm{~mol}\right)$ ]. The mixture was stirred for 1 h after which alkyl bromide ( 0.1 mol ) was added in dry THF ( 50 ml ). The mixture was stirred for 8 h after which ammonia was slowly evaporated off and the residue diluted with water and extracted with ether. The ethereal extract was washed with water and brine, dried, and evaporated, and the residue was distilled under reduced pressure (yields $70-80 \%$ ).

Hex-2-yn-1-ol (20a). B.p. $88-91{ }^{\circ} \mathrm{C}$ at 60 mmHg (Found: C, 73.3; $\mathrm{H}, 10.2 . \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$ requires $\mathrm{C}, 73.4 ; \mathrm{H}, 10.2 \%$ ); $\mathrm{v}_{\text {max. }} 3450$ $(\mathrm{OH})$ and $2180 \mathrm{~cm}^{-1}(\mathrm{C} \equiv \mathrm{C}) ; \delta 0.9\left(3 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.3(2$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.2\left(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Et}\right)$, and $3.6(2 \mathrm{H}$, br s, $\mathrm{CH}_{2} \mathrm{OH}$ ).

Hept-2-yn-1-ol (20b). B.p. $81^{\circ} \mathrm{C}$ at 10 mmHg (Found: C, 75.1 ; $\mathrm{H}, 10.6 . \mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}$ requires $\left.\mathrm{C}, 75.0 ; \mathrm{H}, 10.7 \%\right)$; $\mathrm{v}_{\text {max. }} 3450(\mathrm{OH})$ and $2190 \mathrm{~cm}^{-1}(\mathrm{C} \equiv \mathrm{C}) ; \delta 0.9\left(3 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.2-1.3(4$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.2\left(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Pr}\right)$, and $3.6(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{OH}$ ).

Oct-2-yn-1-ol (20c). B.p. $93^{\circ} \mathrm{C}$ at 10 mmHg (Found: C, 76.1 ; $\mathrm{H}, 11.2 . \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}$ requires C, $76.2 ; \mathrm{H}, 11.1 \%$ ); $\mathrm{v}_{\text {max. }} 3450(\mathrm{OH})$ and $2190 \mathrm{~cm}^{-1}(\mathrm{C} \equiv \mathrm{C}) ; \delta 0.9\left(3 \mathrm{H}, \mathrm{brt}, J 7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.2-1.3$ ( $6 \mathrm{H}, \mathrm{m}$, aliphatic $\mathrm{CH}_{2}$ ), $2.2\left(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Bu}\right)$, and 3.6 ( $2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}$ ).

Non-2-yn-1-ol(20d). B.p. $108^{\circ} \mathrm{C}$ at 10 mmHg (Found: C, 77.2 ; $\mathrm{H}, 11.4 . \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}$ requires C, $77.1 ; \mathrm{H}, 11.4 \%$ ); $\mathrm{v}_{\text {max. }} 3450(\mathrm{OH})$ and $2200 \mathrm{~cm}^{-1}(\mathrm{C} \equiv \mathrm{C}) ; \delta 0.9\left(3 \mathrm{H}, \mathrm{brt}, J 7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.2-1.4$ $\left(8 \mathrm{H}, \mathrm{br} \mathrm{m}\right.$, aliphatic $\left.\mathrm{CH}_{2}\right), 2.2\left(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right)$, and 3.6 ( 2 H , br s, $\mathrm{CH}_{2} \mathrm{OH}$ ).

Preparation of Alk-2-yn-1-als (21a-d).-The alk-2-yn-1-ols ( 30 mmol ) in dry methylene dichloride $(25 \mathrm{ml})$ were added to a suspension of active manganese dioxide ( 25 g ) in dry methylene dichloride $(100 \mathrm{ml})$ and the mixture was stirred for 24 h at room temperature. Dry ether ( 50 ml ) was added and the slurry was filtered through a column of neutral alumina. The filtrate was dried and evaporated to afford a pale yellow residue which was distilled under required pressure. The acetylenic aldehydes which were collected in a receiver cooled in liquid nitrogen were
unstable and became dark on storage. They were prepared and immediately used in the next reaction.

Hex-2-yn-1-al (21a). B.p. $56-62^{\circ} \mathrm{C}$ at 20 mmHg (Found: C, $75.1 ; \mathrm{H}, 8.4 . \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 8.3 \%$ ); $\mathrm{v}_{\text {max. }} 2170$ $(\mathrm{C} \equiv \mathrm{C})$ and $1680 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \delta 1.0\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.3(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.6\left(2 \mathrm{H}\right.$, br t, $\left.J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right)$, and $9.4(1 \mathrm{H}, \mathrm{t}, J 2$ $\mathrm{Hz}, \mathrm{CHO}$ ).

Hept-2-yn-1-al (21b). B.p. $45^{\circ} \mathrm{C}$ at 5 mmHg (Found: C, 76.2 ; $\mathrm{H}, 9.2 . \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}$ requires $\mathrm{C}, 76.3 ; \mathrm{H}, 9.1 \%$ ); $\mathrm{v}_{\text {max. }} 2180(\mathrm{C} \equiv \mathrm{C})$ and $1680 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \delta 1.0\left(3 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{3}\right), 1.3(4 \mathrm{H}, \mathrm{m}$, aliphatic H), $2.6\left(2 \mathrm{H}, \mathrm{brt}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right)$, and $9.3(1 \mathrm{H}, \mathrm{t}, J 2 \mathrm{~Hz}, \mathrm{CHO})$. Oct-2-yn-1-al (21c). B.p. $61^{\circ} \mathrm{C}$ at 2 mmHg (Found: C, 77.1 ; H, 9.7. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}$ requires C, 77.4; $\left.\mathrm{H}, 9.7 \%\right)$; $v_{\text {max. }} 2180(\mathrm{C} \equiv \mathrm{C})$ and $1680 \mathrm{~cm}^{-1}(\mathrm{C}=0) ; \delta 1.0\left(3 \mathrm{H}\right.$, br t, $\left.\mathrm{CH}_{3}\right), 1.3(6 \mathrm{H}$, br, aliphatic $\mathrm{H}), 2.6\left(2 \mathrm{H}\right.$, br t, $\left.J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right)$, and $9.3(1 \mathrm{H}, \mathrm{t}, 2 \mathrm{~Hz}, \mathrm{CHO})$.
Non-2-yn-1-al (21d). B.p. $66-70^{\circ} \mathrm{C}$ at 1 mmHg (Found: C, 78.3; $\mathrm{H}, 10.2 . \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}$ requires $\mathrm{C}, 78.2 ; \mathrm{H}, 10.1 \%$; $\mathrm{v}_{\text {max. }} 2180$ $(\mathrm{C}=\mathrm{C})$ and $1680 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \delta 1.0\left(3 \mathrm{H}\right.$, br t, $\left.\mathrm{CH}_{3}\right), 1.3(8 \mathrm{H}$, br, aliphatic H), $2.6\left(2 \mathrm{H}, \mathrm{brt}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, and $9.3(1 \mathrm{H}, \mathrm{t}, J 2 \mathrm{~Hz}$, CHO).

3,6-Dialkyl-2,4-dimethoxybenzaldehydes
(22a-d).-The acetylenic aldehyde (21) ( 0.01 mol ) and 6 -alkyl-1,5-di-methoxycyclohexa-1,4-diene and dichloromaleic anhydride (2 mg ) were introduced into a glass tube under nitrogen. The tube was evacuated to 0.2 mmHg , sealed, and then heated to $180-190^{\circ} \mathrm{C}$; it was maintained at this temperature for 10 h . After cooling the contents of the tube were sublimed at 200 $210^{\circ} \mathrm{C}$ at 2 mmHg . The pale yellow liquid obtained was purified by t.l.c. using silica gel and chloroform-hexane (3:2) followed by short-path distillation which afforded the aldehydes as pale yellow oils (yields $60 \%$ ).
2-Hexyl-4,6-dimethoxy-5-propylbenzaldehyde (22a). (Found: $\mathrm{C}, 74.1 ; \mathrm{H}, 9.6 . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 73.9, \mathrm{H}, 9.6 \%$ ); $\mathrm{v}_{\text {max. }}$ (neat) $1700(\mathrm{C}=\mathrm{O})$, and 1600 and $1500 \mathrm{~cm}^{-1}$ (aromatic); $\delta 0.9(6 \mathrm{H}$, br $\left.\mathrm{t}, \mathrm{CH}_{3}\right), 1.2-1.6\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 5\right), 2.4-3(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH}_{2} \times 2\right), 3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.0\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.4(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH})$, and $10.1(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.
3-Butyl-2,4-dimethoxy-6-pentylbenzaldehyde (22b). (Found: $\mathrm{C}, 73.7 ; \mathrm{H}, 9.7 . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 73.9 ; \mathrm{H}, 9.6 \%$ ); $\mathrm{v}_{\text {max }}$ (neat) $1705(\mathrm{CO})$ and 1610 and $1500 \mathrm{~cm}^{-1}$ (aromatic); $\delta 0.9(6 \mathrm{H}, \mathrm{br} \mathrm{t}$, $\left.\mathrm{CH}_{3} \times 2\right), 1.2-1.6\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 5\right), 2.4-3.0(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH}_{2} \times 2\right), 3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.0\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.4(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH})$, and $10.0(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

2-Butyl-6-dimethoxy-3-pentylbenzaldehyde (22c). (Found: C, 73.8; $\mathrm{H}, 9.8 . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 73.9 ; \mathrm{H}, 9.6 \%$ ); $v_{\text {max. }}$ (neat) $1695(\mathrm{C}=\mathrm{O})$ and 1610 and $1500 \mathrm{~cm}^{-1}$ (aromatic); $\delta 0.9(6 \mathrm{H}$, br $\left.\mathrm{t}, \mathrm{CH}_{3} \times 2\right), 1.2-1.6\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 5\right), 2.4-3(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH}_{2} \times 2\right), 3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.0\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.38(1 \mathrm{H}, \mathrm{s}$, ArH ), and 10.1 ( $1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$ ).

3-Hexyl-2,4-dimethoxy-6-propylbenzaldehyde (22d). (Found: $\mathrm{C}, 74.0 ; \mathrm{H}, 9.6 . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3}$ requires C, $73.9 ; \mathrm{H}, 9.6 \%$ ); $\mathrm{v}_{\text {max. }} 1700$ $(\mathrm{C}=\mathrm{O})$ and 1610 and $1500 \mathrm{~cm}^{-1}$ (aromatic); $\delta 0.9(6 \mathrm{H}, \mathrm{br} \mathrm{t}$, $\left.\mathrm{CH}_{3} \times 2\right), 1.2-1.6\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 5\right), 2.4-3.0(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH}_{2} \times 2\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.4(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH})$, and $10.1(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

2,5-Dialkylresorcinol Dimethyl Ethers (23a-d).-3,6-Di-alkyl-2,4-dimethoxybenzaldehyde ( 1 mmol ) dissolved in dry xylene ( 10 ml ) was added to a suspension of tris(triphenylphosphine)chlororhodium (TTCR) ( 200 mg ) in dry xylene $(10 \mathrm{ml})$. The mixture was refluxed under nitrogen for 24 h . The yellow precipitate of bis(triphenylphosphine)carbonylchlororhodium was filtered off and the precipitate was thoroughly washed with ethanol ( 25 ml ). The filtrate was concentrated and the residue was purified by t.l.c. using silica gel and benzene-hexane (2:3). The 2,5-dialkylresorcinol dimethyl ethers (23a-d) were obtained in $85-90 \%$ yield.

1-Hexyl-4-propyl-3,5-dimethoxybenzene (23a). (Found: C, $77.8 ; \mathrm{H}, 10.6 \% ; M^{+}$, 264. Calc. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}: \mathrm{C}, 78.0 ; \mathrm{H}, 10.7 \%$, $\left.M^{+}, 264\right)$; $v_{\text {max. }}$. (film) $1615,1590,1470$, and $1460 \mathrm{~cm}^{-1}: \delta 0.9$ ( 6 $\left.\mathrm{H}, \mathrm{brt}, \mathrm{CH}_{3} \times 2\right), 1.2-1.8\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 5\right), 2.4-2.8(4 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \times 2\right)$, $3.8\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right)$, and $6.4(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH} \times 2)$. 1-Butyl-4-pentyl-2,6-dimethoxybenzene (23b). (Found: C, $77.7 ; \mathrm{H}, 10.7 \% ; M^{+}$, 264. Calc. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}: \mathrm{C}, 78.0 ; \mathrm{H}, 10.7 \%$; $\left.M^{+}, 264\right)$; $v_{\text {max. }}$.(film) 1615,1590 , and $1460 \mathrm{~cm}^{-1} ; \delta 0.9(6 \mathrm{H}, \mathrm{br}$ $\left.\mathrm{t}, \mathrm{CH}_{3} \times 2\right), 1.2-1.8\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 5\right), 2.4-2.8(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH}_{2}\right), 3.8\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right)$, and $6.4(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH} \times 2)$.

1-Butyl-3,5-dimethoxy-4-pentylbenzene (23c). (Found: C, $77.9 ; \mathrm{H}, 10.5 \% ; M^{+}, 264$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}: \mathrm{C}, 78.0 ; \mathrm{H}, 10.7 \%$; $\left.M^{+}, 264\right), v_{\text {max. }}$ (film) $1610,1600,1475$, and $1470 \mathrm{~cm}^{-1} ; \delta 0.9$ (6 $\left.\mathrm{H}, \mathrm{brt}, \mathrm{CH}_{3} \times 2\right), 1.2-1.8\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 5\right), 2.5-2.8(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{ArCH}_{2} \times 2\right), 3.81\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right)$, and $6.4(2 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH} \times 2$ ).

1-Hexyl-2,6-dimethoxy-4-propylbenzene (23d). (Found: C, $77.6 ; \mathrm{H}, 10.5 \% ; M^{+}, 264 . \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}$ requires: $\mathrm{C}, 78.0 ; \mathrm{H}, 10.7 \%$; $M^{+}, 264$ ); $v_{\text {max. }}$. (film) $1620,1605,1475$, and $1470 \mathrm{~cm}^{-1} ; \delta 0.9(6$ $\left.\mathrm{H}, \mathrm{brt}, \mathrm{CH}_{3} \times 2\right), 1.2-1.8\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 5\right), 2.4-2.8(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{ArCH}_{2} \times 2\right), 3.8\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right)$, and $6.4(2 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH} \times 2$ ) .

2,5-Dialkylresorcinols; Iso-DB 2073 (24a), Stemphol (24b), Isostemphol (24c), and DB 2073 (24d). -Silicon tetrachloride $(250 \mathrm{mg})$ and sodium iodide ( 40 mg ) were added to a solution of the 2,5-dialkylresorcinol dimethyl ether ( $23 a-d)(100 \mathrm{mg})$ in dry toluene ( 10 ml ) and dry acetonitrile ( 10 ml ). The mixture was refluxed for 24 h and then poured into water $(100 \mathrm{ml})$. The product was extracted with ether and the extract washed with water, dried and evaporated to afford the dialkylresorcinol as a white solid which was crystallized from hexane.

5-Hexyl-2-propylresorcinol, Isomer of DB 2073 (24a). M.p. $88^{\circ} \mathrm{C}$ (hexane) (Found: $\mathrm{C}, 76.3 ; \mathrm{H}, 10.4 . \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$ requires C, $76.2 ; \mathrm{H}, 10.2 \%$ ); $v_{\text {max. }}$ (film) $3450(\mathrm{OH})$ and 1610 and $1490 \mathrm{~cm}^{-1}$ (aromatic).

2-Butyl-5-pentylresorcinol, Stemphol (24b). M.p. $91^{\circ} \mathrm{C}$ (hexane) (lit., ${ }^{34} 91^{\circ} \mathrm{C}$ ) (Found: C, 76.1; H, 10.3. Calc. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}: \mathrm{C}, 76.2 ; \mathrm{H}, 10.2 \%$ ); $v_{\text {max. }}$ (film) $3450(\mathrm{OH})$ and 1620 and $1496 \mathrm{~cm}^{-1}$ (aromatic).

5-Butyl-2-pentylresorcinol, Isomer of Stemphol (24c). M.p. $90^{\circ} \mathrm{C}$ (hexane) (lit., ${ }^{34} 91-93^{\circ} \mathrm{C}$ ) (Found: C, $76.1 ; \mathrm{H}, 10.1$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$ : C, 76.2; H, 10.2\%); $v_{\text {max. }}$ (film) $3450(\mathrm{OH}), 1610$ and $1495 \mathrm{~cm}^{-1}$ (aromatic).

2-Hexyl-5-propylresorcinol, DB 2073 (24d). M.p. $87^{\circ} \mathrm{C}$ (hexane) (lit. ${ }^{34} 87-89^{\circ} \mathrm{C}$ ) (Found: C, 76.3; H, 10.2. Calc. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}: \mathrm{C}, 76.2 ; \mathrm{H}, 10.2 \%$ ); $v_{\text {max. }}$. (film) $3450(\mathrm{OH})$, and 1610 and $1495 \mathrm{~cm}^{-1}$ (aromatic).

## Acknowledgements

We thank Prof. A. J. Birch, F.A.A., F.R.S., for helpful discussions and Prof. F. H. Stodola, Northern Regional Research Laboratory, Agricultural Research Service, USA, Department of Agriculture, Peoria for furnishing a sample of stemphol. We also thank the Department of Science and Technology, New Delhi for generous financial support and a fellowship to N. S. M.

## References

1 K. Pramod, H. Ramanathan, and G. S. R. Subba Rao, J. Chem. Soc., Perkin Trans. 1, 1983, 7, is considered as Part 1.
2 A. J. Birch and F. W. Donovan, Aust. J. Chem., 1953, 6, 360.
3 J. L. Gellerman, W. H. Anderson, and H. Schlenk, Phytochemistry, 1976, 15, 1959.
4 G. M. Gaucher and M. G. Sheppard, Biochem. Prep., 1971. 13, 70.
5 M. V. Sargent, P. Vogel, and J. A. Elix, J. Chem. Soc., Perkin Trans. 1, 1975, 1986.

6 T. M. Harris and C. M. Harris, Tetrahedron, 1977, 33, 2159.
7 A. G. M. Barrett, T. M. Morris, and D. H. R. Barton, J. Chem. Soc., Perkin Trans. 1, 1980, 2272.
8 A. J. Birch and P. Hextall, Aust. J. Chem., 1955, 8, 96.
9 S. Danishefsky and S. J. Etheredge, J. Org. Chem., 1979, 44, 4761.
10 Y. Arai, T. Kamikawa and T. Kubota, Tetrahedron Lett., 1972, 1615.
11 J. N. Freskos, G. M. Morrow, and J. S. Swenton, J. Org. Chem., 1985, 50, 805.
12 G. S. R. Subba Rao, 'Proceedings of 4th Asian Symposium on Medicinal Plants and Spices,' Bangkok, 1980, 303.
13 C. C. Kanakam, H. Ramanathan, G. S. R. Subba Rao, and A. J. Birch, Curr. Sci., 1982, 51, 400.
14 G. S. R. Subba Rao and K. Pramod, Proc. Ind. Acad. Sci., 1984, 93, 573.

15 A. J. Birch, J. Chem. Soc., 1944, 430; A. J. Birch and G. S. R. Subba Rao, Adv. Org. Chem., 1972, 8, 1.
16 A. J. Birch, E. M. A. Shoukry, and F. Stansfield, J. Chem. Soc., 1961, 5376.

17 A. J. Birch and G. S. R. Subba Rao, Tetrahedron Lett., 1968, 3797.
18 A. J. Birch and K. P. Dastur, Tetrahedron Lett., 1972, 4195.
19 D. Peltier, C. R. Seances Acad. Sci., 1953, 236, 1972 (Chem. Abstr., 1954, 48, 3229e).
20 I. Vlattas, I. T. Harrison, L. Tokes, J. H. Fried, and A. D. Cross, J. Org. Chem., 1968, 33, 4178.
21 K. Hoesch, Ber., 1913, 46, 888.
22 Y. Asahina and M. Hiraiwa, Ber., 1935, 68, 1706.
23 H. Nishikawa, J. Agric. Chem. Soc., Jpn, 1933, 9, 772.

24 E. Sondheimer, J. Am. Chem. Soc., 1957, 79, 5036.
25 A. Ballio, S. Barcellona, and B. Santurbano, Tetrahedron Lett., 1966, 3723.

26 L. J. Haynes and E. R. H. Jones, J. Chem. Soc., 1946, 954.
27 I. N. Nazarov, S. N. Ananchenko, and I. V. Torgov, Izvest. Akad. Nauk S.S.S.R., 1959, 95 (Chem. Abstr., 1959, 53, 16085).
28 L. Bradsma, 'Preparative Acetylenic Chemistry,' Elsevier, New York, 1971, 80.
29 A. J. Birch, D. N. Butler, and J. B. Siddall, J. Chem. Soc., 1964, 2941.
30 (a) K. P. Datsur, J. Am. Chem. Soc., 1974, 96, 2605; (b) A. J. Birch and K. P. Datsur, J. Chem. Soc., Perkin Trans. 1, 1973, 1650.

31 A. J. Birch, J. Chem. Soc., 1947, 1642; 1950, 1551.
32 F. H. Stodola, D. Weisleder, and R. F. Vesonder, Phytochem., 1973, 12, 1797.
33 N. Kanda, N. Ishizaki, N. Inoue, M. Oshima, A. Handa, and T. Kitahara, J. Antibiot., 1975, 28, 935, 943.
34 H. Achenbach, W. Kohl, and B. Kunze, Chem. Ber., 1979, 112, 1841.
35 G. Stork and M. Thomasz, J. Am. Chem. Soc., 1964, 86, 471.
36 G. Rickards and L. Weiler, J. Org. Chem., 1969, 43, 3607.
37 R. K. Bentley, E. R. H. Jones, and V. Thaller, J. Chem. Soc. C, 1969, 1096.

38 J. Tsuji and K. Ohno, Synthesis, 1969, 157.
39 M. V. Bhatt and Saad E. Elmorsay, Synthesis, 1982, 1048.


[^0]:    $\dagger$ Present Address: Regional Research Laboratory (CSIR) Trivandrum-

